PressurantInteg.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# Applied Python PRISM
# (PRISM) PaRametrIc System Model
#
# Written by Charlie Taylor <cet@appliedpython.com> 
# Apr 21, 2008

from prism.props.refprop7.n_dll_fluid import n_fluid
from prism.isp.tdk import diskCache

from prism.MassItem import MassItem
from math import *
from prism.Summary import Summary
from prism.press.TankPress import TankPress

#C THIS ROUTINE CALCULATES THE COLD GAS Nitrogen REQUIRED TO PRESSURIZE
#C A STORABLE PROPELLANT TANK
#C

class PressurantInteg( MassItem ):
    
    def __init__(self, name="tank",  mass_lbm=0.0, gas='HE',
        timeProfileL=None, pcentLiqExpelledL=None,
        VpropTnk=1000.0,PGasTnkMEOP=5000.0,PpropNom=350.0,
        PfinGasOvPnom=1.1, 
        tAction=100.0,TminR=500.0,TmaxR=550.0, ullageFrac=0.03,
        PVoW_Bottle=500000., PVoW_Tank=100000.,
        AccGees=1.0,
        Nbottle=1, ellBottle=1.0, LcylOvDBottle=0.0, Cp_effBottle=0.15, # Cp Ti=.125, Al=.2, Monel=.1
        Ntank=2, ellTank=1.414, LcylOvDTank=1.0, Cp_effTank=0.15,
        CdARegMax=None, dPregulator=25.0, NtimeSteps=400, heatExchangerTout=None,
        WtHeLLACS=0.0, QexternalIntoBottle=0.0, velMultTank=1.0, adiabatic=None, TbottleMatlConst=None,
        useDBruns=1, fracExpel=None,  Tullage=None):
        
        MassItem.__init__(self, name, type="pressurant")
        

        self.timeProfileL=timeProfileL
        self.pcentLiqExpelledL=pcentLiqExpelledL

        self.VpropTnk=VpropTnk
        self.ullageFrac = ullageFrac
        self.PGasTnkMEOP=PGasTnkMEOP
        self.PpropNom=PpropNom
        self.PfinGasOvPnom=PfinGasOvPnom
        self.tAction=tAction
        self.TminR=TminR
        self.TmaxR=TmaxR
        self.gas = gas
        self.gasObj = n_fluid(gas,T=530.0,P=1000.0)

        
        self.PVoW_Bottle = PVoW_Bottle
        self.PVoW_Tank = PVoW_Tank
        
        self.AccGees = AccGees
        self.Nbottle = Nbottle
        self.ellBottle = ellBottle
        self.LcylOvDBottle = LcylOvDBottle
        self.Cp_effBottle = Cp_effBottle
        self.Ntank = Ntank
        self.ellTank = ellTank
        self.LcylOvDTank = LcylOvDTank
        self.Cp_effTank = Cp_effTank
        self.CdARegMax = CdARegMax
        self.dPregulator = dPregulator
        self.NtimeSteps = NtimeSteps
        self.heatExchangerTout = heatExchangerTout
        
        self.WtHeLLACS = WtHeLLACS
        
        self.QexternalIntoBottle = QexternalIntoBottle
        self.velMultTank = velMultTank
        self.adiabatic = adiabatic
        
        self.TbottleMatlConst = TbottleMatlConst
        
        self.fracExpel = fracExpel
        self.Tullage = Tullage  # if None, then use TminR as Tullage

        self.useDBruns = useDBruns

        self.reCalc()

    def calcPolytropicValues(self):
        
        Tbi = self.TminR
        Tui = self.TminR
        Tuf = self.TfinalPropGas
        Tbf = self.TfinalGasBot
        
        Pbi = self.PbottleCold
        Pbf = self.PfinalGasBot


        R = log(Tuf/Tui) / log(Pbf/Pbi)
        try:
            gamPolyTank = 1./(1.-R)
        except:
            gamPolyTank = 10.0  # make a silly big number
        #print 'gamPolyTank=',gamPolyTank
        
        R = log(Tbf/Tbi) / log(Pbf/Pbi)
        try:
            gamPolyBottle = 1./(1.-R)
        except:
            gamPolyBottle = 10.0  # make a silly big number
        #print 'gamPolyBottle=',gamPolyBottle
        
        fracIsenBottle = (gamPolyBottle-1.0) / (self.gammaIsen-1.0)
        fracIsenTank = (gamPolyTank-1.0) / (self.gammaIsen-1.0)
        
        return gamPolyBottle, fracIsenBottle, gamPolyTank, fracIsenTank
        
        
    def buildSummary(self):
        
        summ = Summary(  summName='%s Pressurant'%self.gasObj.name,
        componentName=self.name, mass_lbm=self.mass_lbm, type=self.type)
        
        summ.addAssumption( 'Integrated Heat Transfer')
        if self.TbottleMatlConst:
            summ.addAssumption( 'Bottle Material Temperature is Constant = %g degR'%self.TbottleMatlConst)
            
        if self.fracExpel != None:
            summ.addAssumption( 'Blow down after = %g %% Expulsion'%(self.fracExpel*100.,))
			
        if self.heatExchangerTout:
            summ.addAssumption( 'Outlet gas heated to %g degR via Heat Exchanger.'%self.heatExchangerTout )
        
        # add inputs
        summ.addInput( 'VpropTnk', self.VpropTnk, 'cuin', '%g' )
        summ.addInput( 'PGasTnkMEOP', self.PGasTnkMEOP, 'psia', '%g' )
        summ.addInput( 'PpropNom', self.PpropNom, 'psia', '%g' )
        summ.addInput( 'PfinGasOvPnom', self.PfinGasOvPnom, '', '%g' )
        summ.addInput( 'tAction', self.tAction, 'sec', '%g' )
        summ.addInput( 'TminR', self.TminR, 'degR', '%.1f' )
        summ.addInput( 'TmaxR', self.TmaxR, 'degR', '%.1f' )
        if self.fracExpel != None:
            summ.addInput( 'fracExpel', self.fracExpel, '', '%.4f' )
            summ.addInput( 'tRegulated', self.tAction*self.fracExpel, 'sec', '%g' )
        if self.Tullage:
            summ.addInput( 'Tullage', self.Tullage, 'degR', '%.1f' )
        
        # add outputs
        summ.addOutput( 'WGasTotal', self.WtGasTotal, 'lbm', '%.3f' )
        summ.addOutput( 'WtGasResid', self.WtGasResid, 'lbm', '%.3f' )
        if self.WtHeLLACS > 0.0:
            summ.addOutput( 'WtHeLLACS', self.WtHeLLACS, 'lbm', '%.3f' )
        summ.addOutput( 'WGasNon-Resid', self.WGasExpended, 'lbm', '%.3f' )
        summ.addOutput( 'Vbottle', self.Vbottle, 'cuin', '%g' )
        summ.addOutput( 'wdotGas', self.wdotGas, 'lbm/sec', '%g' )
        
        summ.addOutput( 'compressInit', self.compressInit, '', '%g' )
        summ.addOutput( 'PbottleCold', self.PbottleCold, 'psia', '%g' )
        
        summ.addOutput( 'densInitBot', self.densInit, 'lbm/cuft', '%g' )
        summ.addOutput( 'densFinalBot', self.densFinal, 'lbm/cuft', '%g' )
        summ.addOutput( 'densFinalProp', self.densFinalProp, 'lbm/cuft', '%g' )

        summ.addOutput( 'gammaIsen', self.gammaIsen, '', '%g' )
        
        #gamPolyBottle, fracIsenBottle, gamPolyTank, fracIsenTank = self.calcPolytropicValues()
        summ.addOutput( 'gamPolyBottle', self.gamPolyBottle, '', '%g' )
        summ.addOutput( 'gamPolyTank', self.gamPolyTank, '', '%g' )
        summ.addOutput( 'fracIsenBottle', self.fracIsenBottle, '', '%g' )
        summ.addOutput( 'fracIsenTank', self.fracIsenTank, '', '%g' )
        
        summ.addOutput( 'TfinalPropGas', self.TfinalPropGas, 'degR', '%.1f' )
        summ.addOutput( 'TfinalGasBot', self.TfinalGasBot, 'degR', '%.1f' )
        summ.addOutput( 'PfinalGasBot', self.PfinalGasBot, 'psia', '%.1f' )
        
        if self.fracExpel != None:
            summ.addOutput( 'PfinalBlowdown', self.PfinalBlowdown, 'psia', '%.1f' )
            summ.addOutput( 'timeExpel', self.timeExpel, 'sec', '%g' )
            

        return summ


    def reCalc(self):
        if self.useDBruns:
            runSig = diskCache.buildRunSignature( self.gas,
                self.VpropTnk,self.PGasTnkMEOP,self.PpropNom,
                self.PfinGasOvPnom, self.WtHeLLACS,
                self.tAction,self.TminR,self.TmaxR, self.ullageFrac,
                self.PVoW_Bottle, self.PVoW_Tank,
                self.AccGees,
                self.Nbottle, self.ellBottle, self.LcylOvDBottle, self.Cp_effBottle,
                self.Ntank, self.ellTank, self.LcylOvDTank, self.Cp_effTank,
                self.CdARegMax, self.dPregulator, self.NtimeSteps, self.heatExchangerTout,
                self.WtHeLLACS, self.QexternalIntoBottle, self.velMultTank, self.fracExpel)
            if self.adiabatic:
                runSig += 'adiabatic'
            if self.TbottleMatlConst:
                runSig += 'Tbm'+str(self.TbottleMatlConst)
            if self.timeProfileL:
                runSig += 'tPfile'+ str(self.timeProfileL) +'pcpfile'+  str(self.pcentLiqExpelledL)
            if self.Tullage:
                runSig += 'Tullage=%g'%self.Tullage

        
            objDB = diskCache.getSavedRunObj( oxName='CACHE', fuelName='RUNS', runSig=runSig,
                runType="PressInteg")
            if objDB:
                name = self.name + ' '
                diskCache.fillSelfFromDBObj( objDB, selfObj=self )
                self.name = name[:-1]
                return

        
        self.Vullage = self.ullageFrac * self.VpropTnk
        self.Vliq = self.VpropTnk - self.Vullage
        self.vdotLiq = self.Vliq / self.tAction

        #   Start out estimating the WORST CASE Volume with isentropic adiabatic
        #C  CALCULATE Isentropic GAMMA

        #C  FINAL PRESSURE
        PF = self.PfinGasOvPnom*self.PpropNom
        self.PfinalGasBot = PF
        #C  ASSUME MINIMUM TEMPERATURE FOR INITIAL PRESSURE CONDITION
      
        #c... Get starting pressure assuming minimum temperature
        self.gasObj.setTP(T=self.TmaxR, P=self.PGasTnkMEOP)
        WtMolGas = self.gasObj.WtMol

        rhoLoaded = self.gasObj.rho
        self.gasObj.setTD(T=self.TminR,D=rhoLoaded*1728.0)
        self.PbottleCold = self.gasObj.P
        self.densInit = self.gasObj.D
        gammaIsen = self.gasObj.gamma()
        
        self.compressInit = self.gasObj.compressibility()
        
        if self.PpropNom > self.PbottleCold:
        #C  THE FOLLOWING ARE ERROR CONDITION OUTPUTS
            
            print 'ERROR CONDITION IN PressurantInteg.py '
            print 'TANK PRESSURE IS HIGHER THAN Nitrogen TANK PRESSURE'
            print 'self.TmaxR, self.PGasTnkMEOP',self.TmaxR, self.PGasTnkMEOP
            print 'PbottleCold,PropNom,rhoLoaded',self.PbottleCold,self.PpropNom,rhoLoaded

            WGasTotal=(self.PbottleCold-self.PpropNom)*1000.+10000.
            WtGasResid = WGasTotal / 2.0
            WGasExpended = WGasTotal / 2.0
            wdotGas=WGasTotal/self.tAction
            TfinalPropGas = 1.0
            TfinalGasBot = 1.0
            volGasTotal=((self.PbottleCold-self.PpropNom)*100.+100.)*self.VpropTnk
            self.densInit = 0.0
            self.densFinal = 0.0
            self.densFinalProp = 0.0
        else:
            
            VpropTnk = self.Vullage + self.Vliq
            #C  make estimates of min and max bottle volume
            self.gasObj.setTP(T=self.TmaxR, P=PF)
            rhoRT = self.gasObj.rho
            
            VbotMin = max( 0.001, VpropTnk * rhoRT / (rhoLoaded-rhoRT) )
            
            VbotLLACS_min = self.WtHeLLACS / (rhoLoaded-rhoRT)

            #Tmin = self.TminR * (PF/self.PGasTnkMEOP)**( (gammaIsen-1.0)/gammaIsen )
            self.gasObj.setTD(T=self.TminR,D=rhoLoaded*1728.0)
            self.gasObj.constS_newP( PF )
            Tmin = self.gasObj.T
            
            
            self.gasObj.setTP(T=Tmin, P=PF)
            rhoCold = self.gasObj.rho
            VbotMax = VpropTnk * rhoCold / (rhoLoaded-rhoCold)
            
            VbotLLACS_max = self.WtHeLLACS / (rhoLoaded-rhoCold)
            
            print
            print 'Tmin=',Tmin,'  rhoCold=',rhoCold,'  rhoLoaded=',rhoLoaded
            print 'VbotMin=%g'%VbotMin,'   VbotMax=%g'%VbotMax,'  VpropTnk=%g'%VpropTnk

            volGasTotalEst =  (VbotMin + VbotMax + VbotLLACS_min + VbotLLACS_max) / 2.0
            print '   ...Vbottle Est=%g'%volGasTotalEst,

            # Now that 1st estimate has been made, solve for gas volume
            if type(self.Tullage) == type(1.1):
                Tullage = self.Tullage
            else:
                Tullage = self.TminR

        
            self.IntegObj = TankPress(gas=self.gas, Vbottle=volGasTotalEst, Vullage=self.Vullage,
                timeProfileL=self.timeProfileL, pcentLiqExpelledL=self.pcentLiqExpelledL,
                Vliq=self.Vliq, vdotLiq=self.vdotLiq, Pbottle=self.PbottleCold, Ptank=self.PpropNom, PVoW_Bottle=self.PVoW_Bottle, 
                PVoW_Tank=self.PVoW_Tank, Tbottle=self.TminR, Tullage=Tullage, initTullage=1,
                AccGees=self.AccGees, Nbottle=self.Nbottle, ellBottle=self.ellBottle, LcylOvDBottle=self.LcylOvDBottle, 
                Cp_effBottle=self.Cp_effBottle, Ntank=self.Ntank, ellTank=self.ellTank, LcylOvDTank=self.LcylOvDTank, 
                Cp_effTank=self.Cp_effTank, CdARegMax=self.CdARegMax, dPregulator=self.dPregulator, NtimeSteps=self.NtimeSteps, 
                heatExchangerTout=self.heatExchangerTout, WtHeLLACS=self.WtHeLLACS, QexternalIntoBottle=self.QexternalIntoBottle, 
                velMultTank=self.velMultTank, adiabatic=self.adiabatic, TbottleMatlConst=self.TbottleMatlConst)
            
            
            self.IntegObj.solveForVbottle( finalPbotOvPtank=self.PfinGasOvPnom, 
                vMax=VbotMax*2.0+VbotLLACS_max, vMin=VbotMin/2.0+VbotLLACS_min, fracExpel=self.fracExpel)
                
            self.TfinalGasBot = self.IntegObj.TbottleFinal
            self.TfinalPropGas = self.IntegObj.TpropFinal
            
            self.PfinalBlowdown = self.IntegObj.PpropFinal
            self.timeExpel = self.IntegObj.timeExpel
            
            TfinalPropGas = self.TfinalPropGas
            TfinalGasBot = self.TfinalGasBot

            volGasTotal = self.IntegObj.Vbottle
            print ' Vbottle Soln=%g'%volGasTotal,' for Pbottle =%g'%self.PGasTnkMEOP

            self.gasObj.setTP(T=self.TfinalGasBot, P=self.PfinalGasBot)
            self.densFinal = 1728.0 * self.gasObj.rho
            WtGasResid = self.gasObj.rho * self.IntegObj.Vbottle
            
            self.gasObj.setTP(T=self.TmaxR, P=self.PGasTnkMEOP)            
            WGasTotal = self.IntegObj.Vbottle * self.gasObj.rho
            WGasExpended = WGasTotal - WtGasResid

            self.gasObj.setTP(T=self.TfinalPropGas, P=self.PpropNom)
            self.densFinalProp = self.gasObj.D
        
        


        #C  AVERAGE GAS FLOW RATE
        wdotGas = WGasExpended/self.tAction
        if wdotGas < 1.0E-10:wdotGas=1.0E-10
                
        self.WtGasTotal = WGasTotal
        self.WtGasResid = WtGasResid
        self.WGasExpended = WGasExpended
        self.Vbottle = volGasTotal
        #print '   ...Vbottle =%g'%self.Vbottle,' for Pbottle =%g'%self.PGasTnkMEOP
        print '   ...TfinalPropGas=%g'%TfinalPropGas,'   TfinalGasBot=%g'%TfinalGasBot
        self.wdotGas = wdotGas
        self.TfinalPropGas=    TfinalPropGas
        self.TfinalGasBot=    TfinalGasBot
        self.gammaIsen = gammaIsen
        
        self.mass_lbm = WGasTotal
        
        self.gamPolyBottle, self.fracIsenBottle, self.gamPolyTank, self.fracIsenTank = self.calcPolytropicValues()

        if self.useDBruns:
            #  will save whether or not run was good (i.e. self.ranOK=0 or 1)
            objDB = diskCache.buildResultObjCopy( self )
            objDB = diskCache.saveResultObj( oxName='CACHE', fuelName='RUNS', runSig=runSig,
                runType="PressInteg",
                resultObj=objDB)
                


if __name__ == "__main__":  #self test
    
    
    from prism.press import PressurantHe
    # validate against Transtage
    h = PressurantInteg(name="General Test", gas='HE',
        VpropTnk=114000.0,PGasTnkMEOP=10000.0,PpropNom=80.0,
        Nbottle=4,
        PfinGasOvPnom=2.0, heatExchangerTout=None,
        tAction=15.0,TminR=510.0,TmaxR=550.0, useDBruns=0, TbottleMatlConst=None)
    print h.getMassStr()
    print
    print h.getSummary()

    hSimple = PressurantHe.PressurantHe(name="tank",  mass_lbm=0.0,
        VpropTnk=h.VpropTnk,PHeTnk=h.PGasTnkMEOP,PpropNom=h.PpropNom,
        PfinHeOvPnom=h.PfinGasOvPnom, wtHeACS=0.0,
        tAction=h.tAction,TminR=h.TminR,TmaxR=h.TmaxR,
        tPolyCorr=240.0, gamPolyCorr=1.66, gamLimPolyCorr=1.0,
        gammaPolyInp=None,
        THeTnkHX=None)
    
    hSimple.calibrate( TfBottle=h.TfinalGasBot, TfProp=h.TfinalPropGas )
    print
    print hSimple.getSummary()
    
    if 1:#h.IntegObj:
        h.IntegObj.makeExcelPlots(title='Testing 1,2,3')