PressurantHe.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# Applied Python PRISM
# (PRISM) PaRametrIc System Model
#
# Written by Charlie Taylor <cet@appliedpython.com> 
# Oct,21 2005

#from prism.props.refprop7.n23_fluid import n_fluid
from prism.props.refprop7.n_dll_fluid import n_fluid

from prism.MassItem import MassItem
from math import *
from prism.Summary import Summary
#C THIS ROUTINE CALCULATES THE COLD GAS HELIUM REQUIRED TO PRESSURIZE
#C A STORABLE PROPELLANT TANK
#C

class PressurantHe( MassItem ):
    
    def calibrate(self, TfBottle=400.0, TfProp=500. ):
        
        try:
            lnT = log(TfBottle/self.TminR)
        except:
            lnT = 0.0
        try:
            lnP = log(self.PfinalHeBot/self.PinitCold)
        except:
            lnP = 1.0
            
        R = lnT / lnP
        
        self.gammaPolyInp = 1.0 / (1.0 - R)
        self.THeTnkHX = TfProp
        self.calibrateCalled = 1        
        self.reCalc()

    def __init__(self, name="tank",  mass_lbm=0.0,
        VpropTnk=1000.0,PHeTnk=5000.0,PpropNom=350.0,
        PfinHeOvPnom=1.1, wtHeACS=0.0,
        tAction=100.0,TminR=500.0,TmaxR=550.0,
        tPolyCorr=240.0, gamPolyCorr=1.66, gamLimPolyCorr=1.0,
        gammaPolyInp=None,
        THeTnkHX=None):
        
        MassItem.__init__(self, name, type="pressurant")
        
        self.VpropTnk=VpropTnk
        self.wtHeACS = wtHeACS
        self.PHeTnk=PHeTnk
        self.PpropNom=PpropNom
        self.PfinHeOvPnom=PfinHeOvPnom
        self.tAction=tAction
        self.TminR=TminR
        self.TmaxR=TmaxR
        self.tPolyCorr=tPolyCorr
        self.gamPolyCorr=gamPolyCorr
        self.gamLimPolyCorr=gamLimPolyCorr
        self.gammaPolyInp = gammaPolyInp
        self.symbol = "He"
        self.gasObj = n_fluid("HE",T=530.0,P=1000.0)
        
        self.THeTnkHX = THeTnkHX # if not None, then using HX downstream of bottle
        self.calibrateCalled = 0
        
        self.reCalc()

        
    def buildSummary(self):
        
        summ = Summary(  summName='Helium Pressurant',
        componentName=self.name, mass_lbm=self.mass_lbm, type=self.type)
        
        if self.calibrateCalled:
            summ.addAssumption( 'Calibrated Polytropic Heat Transfer')
        else:
            summ.addAssumption( 'Polytropic Heat Transfer')

        if self.THeTnkHX:
            if self.calibrateCalled:
                summ.addAssumption('Final Helium Temperatures Calibrated with High Fidelity Analysis')
            else:
                summ.addAssumption('Heated Helium (Heat Exchanger between source and tank')

        # add inputs
        summ.addInput( 'VpropTnk', self.VpropTnk, 'cuin', '%g' )
        summ.addInput( 'PHeTnk', self.PHeTnk, 'psia', '%g' )
        summ.addInput( 'PpropNom', self.PpropNom, 'psia', '%g' )
        summ.addInput( 'PfinHeOvPnom', self.PfinHeOvPnom, '', '%g' )
        summ.addInput( 'tAction', self.tAction, 'sec', '%g' )
        summ.addInput( 'TminR', self.TminR, 'degR', '%.1f' )
        summ.addInput( 'TmaxR', self.TmaxR, 'degR', '%.1f' )
        if self.gammaPolyInp:
            if self.calibrateCalled:
                summ.addInput( 'gammaPolyCalibrated', self.gammaPolyInp, '', '%g' )
            else:
                summ.addInput( 'gammaPolyInp', self.gammaPolyInp, '', '%g' )
        else:
            summ.addInput( 'tPolyCorr', self.tPolyCorr, 'sec', '%g' )
            summ.addInput( 'gamPolyCorr', self.gamPolyCorr, '', '%g' )
            summ.addInput( 'gamLimPolyCorr', self.gamLimPolyCorr, '', '%g' )

        if self.THeTnkHX:
            if self.calibrateCalled:
                summ.addInput( 'THeCalibrated', self.THeTnkHX, 'degR', '%.1f')
            else:
                summ.addInput( 'THeTnkHX', self.THeTnkHX, 'degR', '%.1f')

        # add outputs
        summ.addOutput( 'WHeTotal', self.WtHeGas, 'lbm', '%.3f' )
        summ.addOutput( 'WtHeResid', self.WtHeResid, 'lbm', '%.3f' )
        if self.wtHeACS > 0.0:
            summ.addOutput( 'wtHeACS', self.wtHeACS, 'lbm', '%.3f' )
        summ.addOutput( 'WHeExpended', self.WHeExpended, 'lbm', '%.3f' )
        summ.addOutput( 'volHeTotal', self.volHeTotal, 'cuin', '%g' )
        summ.addOutput( 'wdotHe', self.wdotGas, 'lbm/sec', '%g' )
        summ.addOutput( 'compressInit', self.compressInit, '', '%g' )
        summ.addOutput( 'PinitCold', self.PinitCold, 'psia', '%g' )
        summ.addOutput( 'densInitBot', self.densInit, 'lbm/cuft', '%g' )
        summ.addOutput( 'densFinalBot', self.densFinal, 'lbm/cuft', '%g' )
        summ.addOutput( 'densFinalProp', self.rhoPropHe*1728.0, 'lbm/cuft', '%g' )

        summ.addOutput( 'gammaPoly', self.gammaPoly, '', '%g' )
        summ.addOutput( 'TfinalPropHe', self.TfinalPropHe, 'degR', '%.1f' )
        summ.addOutput( 'TfinalHeBot', self.TfinalHeBot, 'degR', '%.1f' )
        summ.addOutput( 'PfinalHeBot', self.PfinalHeBot, 'psia', '%.1f' )
        

        return summ


    def reCalc(self):


        #C  CALCULATE POLYTROPIC GAMMA
        WtMolHe = self.gasObj.WtMol
        if self.gammaPolyInp:
            gammaPoly = self.gammaPolyInp
        elif self.tAction <= self.tPolyCorr:
            gammaPoly = self.gamPolyCorr - self.tAction*(self.gamPolyCorr - 1.1)/self.tPolyCorr
        else:
            abot=self.tPolyCorr*(1.1-self.gamLimPolyCorr)
            if abs(abot) < 1.0E-10:
                if abot > 0.0:
                    abot=1.0E-10
                else:
                    abot=-1.0E-10
              
            atop=-1.0*(self.gamPolyCorr-1.1)*(self.tAction-self.tPolyCorr)
            arat=atop/abot
            if abs(arat) > 30.0:
                if arat > 0.0:
                    arat=30.0
                else:
                    arat=-30.0

            gammaPoly = self.gamLimPolyCorr + (1.1-self.gamLimPolyCorr)*exp(arat)

        #C  FINAL PRESSURE
        PF = self.PfinHeOvPnom*self.PpropNom
        self.PfinalHeBot = PF
        #C  ASSUME MINIMUM TEMPERATURE FOR INITIAL PRESSURE CONDITION
      
        #c... Get starting pressure assuming minimum temperature
        self.gasObj.setTP(T=self.TmaxR,P=self.PHeTnk)
        
        rhoLoaded = self.gasObj.rho
        self.gasObj.setTD(T=self.TminR, D=rhoLoaded*1728.0)
        
        PinitMin = self.gasObj.P
        self.PinitCold = PinitMin
        self.rhoBotInitCold = self.gasObj.rho

        if self.PpropNom > PinitMin:
        #C  THE FOLLOWING ARE ERROR CONDITION OUTPUTS
            
            print 'ERROR CONDITION IN PressurantHe.py '
            print 'TANK PRESSURE IS HIGHER THAN HELIUM TANK PRESSURE'
            print 'self.TmaxR, self.PHeTnk',self.TmaxR, self.PHeTnk
            print 'PinitMin,PropNom,rhoLoaded',PinitMin,self.PpropNom,rhoLoaded
            
            WHeTotal=(PinitMin-self.PpropNom)*1000.+10000.
            WtHeResid = WHeTotal / 2.0
            WHeExpended = WHeTotal / 2.0
            wdotHe=WHeTotal/self.tAction
            TfinalPropHe = 1.0
            TfinalHeBot = 1.0
            volHeTotal=((PinitMin-self.PpropNom)*100.+100.)*self.VpropTnk
            self.densInit = 0.0
            self.densFinal = 0.0
        else:
            #C  FINAL TEMPERATURES
            pratio=self.PpropNom/self.PinitCold
            if pratio < 1.0E-5:pratio=1.0E-5
            if pratio > 0.9999:pratio=0.9999

            gammaExp=1.-1./gammaPoly
            if gammaExp > 10.0:gammaExp=10.0
            if gammaExp < -10.0:gammaExp=-10.0

            Tf1R=self.TminR*(pratio)**gammaExp
            
            # heat exchanger downstream of bottle
            if self.THeTnkHX:
                Tf1R = self.THeTnkHX
            
            
            pratio=PF/PinitMin
            if pratio < 1.0E-5:pratio=1.0E-5
            if pratio > 0.9999:pratio=0.9999

            TfbR = self.TminR*(pratio)**gammaExp

            #C  COMPRESSIBILITY FACTORS
            self.gasObj.setTP(T=Tf1R,P=self.PpropNom)
            ZF1 = self.gasObj.compressibility()
            self.rhoPropHe = self.gasObj.rho
            #if ZF1 < 1.0:ZF1=1.0

            self.gasObj.setTP(T=TfbR,P=PF)
            ZFB = self.gasObj.compressibility()
            self.rhoBotFinal = self.gasObj.rho
            #if ZFB < 1.0:ZFB=1.0
      
            self.gasObj.setTP(T=self.TminR,P=PinitMin)
            ZIB = self.gasObj.compressibility()
            self.compressInit = ZIB
            #if ZIB < 1.0:ZIB=1.0
            TfinalPropHe=Tf1R
            TfinalHeBot=TfbR
            #C  WEIGHT OF EXPELLED GAS
            #WHeExpended = (self.PpropNom*self.VpropTnk/(Tf1R*ZF1) )*WtMolHe/18540. + self.wtHeACS
            WHeExpended = self.rhoPropHe*self.VpropTnk +  self.wtHeACS
            
            if self.PfinHeOvPnom<1.0:WHeExpended=WHeExpended*self.PfinHeOvPnom

            if WHeExpended < 1.0E-10:WHeExpended=1.0E-10
            #C  INITIAL VOLUME OF EXPELLED GAS
            #volHeExpended = WHeExpended*18540.*self.TminR*ZIB/(PinitMin*WtMolHe)
            
            volHeExpended = WHeExpended / self.rhoBotInitCold
            
            if volHeExpended < 1.0E-10:volHeExpended=1.0E-10
            #C  WEIGHT OF RESIDUAL GAS
            WtHeResid = volHeExpended/(TfbR*ZFB/PF - self.TminR*ZIB/PinitMin)* WtMolHe/18540.
            
            #WtHeResid = WHeExpended * self.rhoBotFinal / (self.rhoBotInitCold - self.rhoBotFinal)
            
            if WtHeResid < 1.0E-10:WtHeResid=1.0E-10
            #C  TOTAL GAS WEIGHT, VOLUME AND PRESSURE
            WHeTotal =  WHeExpended + WtHeResid
            if WHeTotal < 1.0E-10:WHeTotal=1.0E-10
            
            volHeTotal =  WHeTotal*volHeExpended/WHeExpended
            if volHeTotal < 1.0E-10:volHeTotal=1.0E-10
                
            self.densInit = 1728.0 * PinitMin * WtMolHe / 18540.0 / self.TminR / ZIB
            self.densFinal = 1728.0 * PF * WtMolHe / 18540.0 / TfbR / ZFB

        #C  AVERAGE GAS FLOW RATE
        wdotHe = WHeExpended/self.tAction
        if wdotHe < 1.0E-10:wdotHe=1.0E-10
                
        self.WtHeGas = WHeTotal
        self.WtHeResid = WtHeResid
        self.WHeExpended = WHeExpended
        self.volHeTotal = volHeTotal
        self.wdotGas = wdotHe
        self.TfinalPropHe=    TfinalPropHe
        self.TfinalHeBot=    TfinalHeBot
        self.gammaPoly = gammaPoly
        
        self.mass_lbm = WHeTotal
    

if __name__ == "__main__":  #self test

    # validate against Transtage
    h = PressurantHe(name="Oxidizer Tank Helium",
        VpropTnk=565754.0,PHeTnk=3250.0,PpropNom=159.36,
        PfinHeOvPnom=1.0,
        tAction=433.94,TminR=510.0,TmaxR=550.0)
    print h.getMassStr()
    print
    print h.getSummary()

    h = PressurantHe(name="MKV cold gas",
        VpropTnk=10.,PHeTnk=10000.0,PpropNom=2600.,
        PfinHeOvPnom=1.0,
        tAction=220.,TminR=510.0,TmaxR=550.0)
    print h.getMassStr()
    print
    print h.getSummary()