Engine_Regen.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# Applied Python PRISM
# (PRISM) PaRametrIc System Model
#
# Written by Charlie Taylor <cet@appliedpython.com> 
# Oct,21 2005

from prism.MassItem import MassItem
from prism.isp.cea import CEA_Isp
from math import *
from prism.utils import Constants
from prism.Summary import Summary
from prism.props import Materials
from prism.isp import Nozzle_Eff
from prism.utils import mensuration
from prism.props import Inc_liquid
from prism.engines import ValveSolenoid
from prism.isp import separated_Cf
from prism.engines.SA_Nozzle import getEngineSurfaceArea
from prism.pov import POV_Items, POV_Basics

class Engine_Regen( MassItem ):
    
    def __init__(self, name="regen engine",  mass_lbm=0.0, oxName='LOX', fuelName='Ethanol',
        cxw=1.25, Pc=550.0, Fvac=10000.0, eps=25.0, mr=1.8, DtInp=None,
        CR=2.5, LoverDt=4.0, LchamMin=1.5, xlnOverLcham=0.5,
        etaERE=0.97, etaNoz=0.99, matlInj="SS", cxwInj=1.0, cxwValves=1.0, isBell=1, pcentBell=80.0,
        halfAngDeg=15.0, useFastCEALookup=0, Number=1, etaKinInp=1.0,
        calcEtaNoz=1, thkNozExtMin=0.03, matlNozExt="Cb103", minBipropValveWt=0.2,
        inputIspDel=0, IspDel=300.0, valvesMassInput=None, Pamb=0.0,
        epsNozExt=6.0, SFcloseout=2.0, matlCloseout='Ni', matlGasWall="CuZr",
        thkMinCloseout=0.05, thkMinGasWall=0.05, aveLandWidth=0.05, aveChannelWidth=0.05,
        aveChannelHeight=0.05):
        
        MassItem.__init__(self, name, type="inert")
        
        self.Number = Number # number of engines
        self.oxName = oxName
        self.fuelName = fuelName
        self.iprop = oxName + '/' + fuelName
        
        self.Fvac = Fvac
        self.DtInp = DtInp  # if DtInp is input, then Fvac is calculated
        self.Pc = Pc
        self.eps = eps
        self.mr = mr
        self.CR = CR
        self.xlnOverLcham = xlnOverLcham
        self.LoverDt = LoverDt
        self.LchamMin = LchamMin
        self.cxw = cxw
        self.cxwValves = cxwValves
        self.minBipropValveWt = minBipropValveWt
        self.etaERE = etaERE
        self.etaKinInp = etaKinInp
        self.Pamb = Pamb

        self.inputIspDel = inputIspDel
        self.IspDel = IspDel
        
        self.isBell = isBell
        self.pcentBell = pcentBell
        self.halfAngDeg = halfAngDeg
        self.etaNoz = etaNoz
        self.calcEtaNoz = calcEtaNoz
        
        self.matlInj = matlInj
        self.thkNozExtMin = thkNozExtMin
        self.cxwInj = cxwInj
        self.rhoInj, self.syInj, self.eInj, tmingInj = Materials.getMatlProps(matlInj)
        
        self.matlNozExt = matlNozExt
        self.rhoNozExt, self.syNozExt, self.eNozExt, self.tmingNozExt = Materials.getMatlProps(matlNozExt)

        self.epsNozExt = epsNozExt
        self.SFcloseout = SFcloseout
        self.matlCloseout = matlCloseout
        self.matlGasWall = matlGasWall
        self.thkMinCloseout = thkMinCloseout
        self.thkMinGasWall = thkMinGasWall
        self.aveLandWidth = aveLandWidth
        self.aveChannelWidth = aveChannelWidth
        self.aveChannelHeight = aveChannelHeight

        self.rhoCloseout, self.syCloseout, self.eCloseout, self.tmingCloseout = Materials.getMatlProps(matlCloseout)
        self.rhoGasWall, self.syGasWall, self.eGasWall, self.tmingGasWall = Materials.getMatlProps(matlGasWall)


        # assume storable liquids for the FFC engine
        self.FlObj = Inc_liquid.Inc_liquid(symbol=fuelName,T=None,P=Pc*1.5)
        self.OxObj = Inc_liquid.Inc_liquid(symbol=oxName,T=None,P=Pc*1.5)
        
        # assume identical ox and fuel valves
        self.valvesMassInput = valvesMassInput # if input, then do NOT calculate
        if valvesMassInput:
            self.Valves = None
        else:
            self.Valves = ValveSolenoid.ValveSolenoid( name='biprop valves', Number=2, cxw=cxwValves )
        
        
        self.ispObj = CEA_Isp.CEA_Isp( oxName=oxName, fuelName=fuelName, useFastLookup=useFastCEALookup ) # create isp calculating object
        self.reCalc()
        
    def getPOV_Item(self):
        # be sure to include pov_h, pov_w, and pov_d calcs in reCalc
        if hasattr( self, 'texture'):
            texture = self.texture
        else:
            
            texture = POV_Basics.Texture( colorName="Coral" )
        
        s = POV_Items.TCA_Bell( xlc=self.xlc , xln=self.xln, CR=self.CR, 
            Rt=self.Dt/2., eps=self.eps,  pcentBell=self.pcentBell,  texture=texture,
            isBell=self.isBell, halfAngDeg=self.halfAngDeg)
        
        return s
        
    def reCalc(self, autoCalc=1):
        self.autoCalc = autoCalc
        # set design variables

        if self.DtInp:
            self.Dt = self.DtInp
            self.At = pi * self.Dt**2/4.0 # used in calcNozzleEfficiency
        else:
            self.Dt = None
            self.At = None # used in calcNozzleEfficiency
        
        #self.IspODE,self.CstarODE,self.Tc = \
        #    self.ispObj.get_IvacCstrTc(Pc=self.Pc, MR=self.mr, eps=self.eps)

        self.IspODE,self.CstarODE,self.Tc, self.mw, self.gam = \
            self.ispObj.get_IvacCstrTc_ThtMwGam( Pc=self.Pc, MR=self.mr, eps=self.eps)

        self.PcOvPexit = self.ispObj.get_PcOvPe(Pc=self.Pc, MR=self.mr, eps=self.eps)
        self.Pexit = self.Pc / self.PcOvPexit
            
        if self.calcEtaNoz:
            if self.isBell:
                isConical=0
            else:
                isConical=1
            self.etaBL,self.etaDiv,self.etaKin, etaCf = \
                Nozzle_Eff.calcNozzleEfficiency(Pc=self.Pc, Fvac=self.Fvac, eps=self.eps, At=self.At,
                epsAtt=self.eps, isConical=isConical, pcentBell=self.pcentBell, halfAngleDeg=self.halfAngDeg,
                iprop=self.iprop, mr=self.mr, etaKinInp=self.etaKinInp,
                adjBL=1.0, adjKin=1.0, adjDiv=1.0, isRegenCham=0, isRegenNoz=0 )
                
            self.etaNoz = etaCf
        
        # if isp delivered is input, correct etaNoz to reflect that input
        if self.inputIspDel:
            self.Isp = self.IspDel
            self.effIsp = self.Isp / self.IspODE
            self.etaNoz = self.effIsp / self.etaERE
        else:
            self.effIsp = self.etaERE * self.etaNoz
            self.Isp = self.IspODE * self.effIsp
            
        # even if Isp is input, use CEA cstar to calculate throat diameter
        self.Cstar = self.CstarODE * self.etaERE
        
        if self.DtInp:
            self.wdotTot = self.Pc * self.At * 32.174 / self.Cstar
            self.Fvac = self.wdotTot * self.Isp
        else:
            self.wdotTot = self.Fvac / self.Isp
            self.At = self.Cstar* self.wdotTot / self.Pc / Constants.gc
            self.Dt = sqrt( self.At / pi ) * 2.0
            
        self.wdotOx  = self.wdotTot * self.mr / (1.0 + self.mr)
        self.wdotFl = self.wdotTot - self.wdotOx 
        
        self.volDotOx = self.wdotOx / self.OxObj.rho
        self.volDotFl = self.wdotFl / self.FlObj.rho
        
        if self.Valves:
            self.Valves.cuInchPerSec = max( self.volDotOx, self.volDotFl )
            self.Valves.reCalc()
            self.WtValves = self.Valves.mass_lbm
        else:
            self.WtValves = self.valvesMassInput
        
        ftPerSec = 30.0 # through valve
        dCharFl = sqrt( 4.0 * self.volDotFl/ pi / ftPerSec) 
        dCharOx = sqrt( 4.0 * self.volDotOx / pi / ftPerSec)
        self.dChar = max( dCharFl, dCharOx)

        # weight of two identical valves
        #self.WtValves = 2.0 * 0.268 * (self.dChar/1.279)**2
        #if self.WtValves < self.minBipropValveWt: # minimum of 45 (0.2 lbm) grams per valve (90 total)
        #    self.WtValves = self.minBipropValveWt
        #self.WtValves *= self.cxwValves
            
        self.WtMisc = 0.319 * (self.dChar/1.279)**2  # scale miscellaneous like valve
        #if self.WtMisc < 0.1:
        #    self.WtMisc = 0.1
        
        self.Dcham = self.Dt * sqrt( self.CR )
        self.Lcham = self.Dt * self.LoverDt
        if self.Lcham < self.LchamMin:
            self.Lcham = self.LchamMin
        self.Dexit = self.Dt * sqrt( self.eps )
        
        self.xln = self.xlnOverLcham * self.Lcham
        self.xlc = self.Lcham - self.xln
        
        
        if self.isBell:
            self.Lnoz = (sqrt(self.eps)-1.0)*self.pcentBell*(self.Dt/2.0)/100.0/tan(15.0*pi/180.0)
            # curve fit of ratio to minimum length rao nozzle
            self.ratmlr = (self.pcentBell/100.0) * 1612.1/(self.eps + 1009.0)
            self.SANozExt = self.Dt**2/4.*(3.368*(self.eps+10.875)**1.2606 + \
                self.eps*(self.ratmlr-1.25)*10.75)
        else:
            self.Lnoz = (sqrt(self.eps)-1.0)*(self.Dt/2.0)/tan(self.halfAngDeg*pi/180.0)
            r1 = self.Dt/2.0
            r2 = self.Dexit/2.0
            self.SANozExt = pi * sqrt((r1-r2)**2 + self.Lnoz**2) * (r1+r2)
        
        # calc surface area of engine and nozzle
        SAENG, SACHM, SATotalNoz, SAAttach = getEngineSurfaceArea( isBell=self.isBell, 
            eps=self.eps, epsNozExt=self.epsNozExt, pcentBell=self.pcentBell,
            Dthrt=self.Dt, halfAngDeg=self.halfAngDeg, xln=self.xln, xlc=self.xlc, CR=self.CR)
        
        self.SANozExt = SATotalNoz - SAAttach
        self.SAChamber = SACHM
        self.SANozRegen = SAAttach
        self.SAGasWall = SACHM + SAAttach  # regen cooled gas wall
        
        self.WtGasWall = self.rhoGasWall * self.SAGasWall * self.thkMinGasWall
        self.WtCloseout = self.rhoCloseout * self.SAGasWall * self.thkMinCloseout
        self.WtChannels = self.rhoGasWall * self.SAGasWall * self.aveChannelHeight * \
            self.aveLandWidth / (self.aveLandWidth+self.aveChannelWidth)
        
            
        self.thkNozExt = (self.thkMinCloseout*0.9 + 3.5*self.tmingNozExt) / 4.5
        if self.thkNozExt < self.thkNozExtMin: 
            self.thkNozExt = self.thkNozExtMin
            
        self.WtNozExt = self.thkNozExt * self.SANozExt * self.rhoNozExt
        
        self.WtChamber = self.WtGasWall + self.WtCloseout + self.WtChannels 

        thkMultAcc = 0.05 + 0.25/self.Dcham
        VolAccustic = mensuration.cylVol( thkMultAcc*self.Dcham, self.Dcham, self.Dcham/4.0 )
        self.WtAcoustic = VolAccustic * self.rhoGasWall
        
        # the injector ht also gets smaller with increased Dcham
        htMultDCham = min(1.0, 1.5/self.Dcham)
        
        htInj =  self.Dcham*htMultDCham
        VolInj = mensuration.solidCylVol( self.Dcham*1.1 , htInj )
        self.WtInj = self.rhoInj * VolInj * self.cxwInj
           
        self.Lengine = self.Lnoz + self.Lcham + self.Dcham  # use Dcham as an inj face fwd length

        
        # add up parts
        self.mass_lbm = self.WtNozExt + self.WtChamber + self.WtInj + self.WtAcoustic  + self.WtMisc
            
        self.mass_lbm = self.Number * ( self.mass_lbm * self.cxw   + self.WtValves )
        
        self.FtoW = self.Fvac * self.Number / self.mass_lbm
        
        self.pov_h = self.Lengine
        self.pov_w = max( self.Dexit, self.Dcham )
        self.pov_d = self.pov_w
        
        # get sea level performance
        #CfSL, CfOverCfvacSL, modeSL = separated_Cf.ambientCf(gam=self.gam, epsTot=self.eps, Pc=self.pc, Pamb=14.7)
        
        self.Cfvac = self.Isp * 32.174 / self.Cstar
        
        if self.Pamb > 0.0:
            CfOvCfvacAtEsep, CfOvCfvac, Cfsep, CfiVac, CfiAmbSimple, CfVac, epsSep, Psep = \
                separated_Cf.sepNozzleCf(self.gam, self.eps, self.Pc, self.Pamb)

            if self.Pexit > Psep:
                self.IspAmb = self.Isp - self.Cstar*self.Pamb*self.eps/self.Pc/32.174
                self.CfAmb = self.IspAmb * 32.174 / self.Cstar
            else:
                IspODEepsSep,CstarODE,Tc = \
                    self.ispObj.get_IvacCstrTc(Pc=self.Pc, MR=self.mr, eps=epsSep)
                    
                CfvacAtEsep = self.Cfvac * IspODEepsSep / self.IspODE
                
                self.CfAmb = CfvacAtEsep * CfOvCfvacAtEsep
                self.IspAmb = self.CfAmb * self.Cstar / 32.174

            # figure out mode of nozzle operation
            if self.Pexit > Psep:
        
                if self.Pexit > self.Pamb:
                    self.mode = 'UnderExpanded (Pe=%g)'%self.Pexit
                else:
                    self.mode = 'OverExpanded (Pe=%g)'%self.Pexit
            else:
                self.mode = 'Separated (Psep=%g, epsSep=%g)'%(Psep,epsSep)
            
            # calc ambient thrust
            self.Famb = self.wdotTot * self.IspAmb
            
        else:
            self.IspAmb = self.Isp
            self.Famb = self.Fvac

        self.PfaceOvPc =(1. + .25/self.CR**1.8)  # multiply time Pc to get PcFace
        self.PcFace = self.Pc * self.PfaceOvPc


    def buildSummary(self):
        
        summList = []
        summ = Summary(  summName='Bipropellant Engine',
        componentName=self.name, mass_lbm=self.mass_lbm, type=self.type)
        
        summ.addAssumption( 'Propellants : ' + self.oxName + ' / ' + self.fuelName )
        summ.addAssumption( 'NASA CEA Code for ODE performance ')
        summ.addAssumption( 'Physical Weight Model ')
        summ.addAssumption( 'Injector Material is ' + self.matlInj)
        summ.addAssumption( 'Nozzle Extension Material is ' + self.matlNozExt)
        if self.isBell:
            summ.addAssumption( 'Bell Nozzle with Percent Bell = %g'%self.pcentBell)
        else:
            summ.addAssumption( 'Conical Nozzle with Half Angle = %g deg'%self.halfAngDeg )
        
        if self.Number>1:
            summ.addAssumption( 'Mass is for %i engines total'%self.Number )


        #summ.addInput(self, label='generic param', value=0.0, units='', format='%g')

        if self.DtInp:
            summ.addInput('Dt', self.Dt, 'in', '%.3f')
        else:
            summ.addInput('Fvac', self.Fvac, 'lbf', '%g')
        summ.addInput('Pc', self.Pc, 'psia', '%.1f')
        summ.addInput('eps', self.eps, '', '%g')
        if self.isBell:
            summ.addInput('%Bell', self.pcentBell, '%', '%.2f')
        else:
            summ.addInput('halfAngDeg', self.halfAngDeg, 'deg', '%.2f')
        summ.addInput('mr', self.mr, '', '%g')
        summ.addInput('CR', self.CR, '', '%g')
        summ.addInput('xlnOverLcham', self.xlnOverLcham, '', '%g')

        summ.addInput('thkMinGasWall', self.thkMinGasWall, 'in', '%.3f')
        summ.addInput('thkMinCloseout', self.thkMinCloseout, 'in', '%.3f')
        summ.addInput('aveLandWidth', self.aveLandWidth, 'in', '%.3f')
        summ.addInput('aveChannelWidth', self.aveChannelWidth, 'in', '%.3f')
        summ.addInput('aveChannelHeight', self.aveChannelHeight, 'in', '%.3f')

        summ.addInput('LoverDt', self.LoverDt, '', '%g')
        summ.addInput('LchamMin',self.LchamMin, 'in', '%.3f')
        summ.addInput('cxwInj', self.cxwInj, '', '%g')
        summ.addInput('cxwValves', self.cxwValves, '', '%g')
        summ.addInput('cxw', self.cxw, '', '%g')
        summ.addInput('etaERE', self.etaERE, '', '%g')
        if not self.calcEtaNoz:
            summ.addInput('etaNoz', self.etaNoz, '', '%g')

        if self.Pamb > 0.0:
            summ.addInput('Pamb', self.Pamb, 'psia', '%g')
    


        # outputs
        if self.DtInp:
            summ.addOutput('Fvac', self.Fvac, 'lbf', '%g')
        summ.addOutput('Isp', self.Isp, 'sec', '%g')
        summ.addOutput('Cstar', self.Cstar, 'ft/sec', '%.1f')
        if self.inputIspDel:
            summ.addOutput('etaNoz', self.etaNoz, '', '%g')
        
        elif self.calcEtaNoz:
            summ.addOutput('etaBL', self.etaBL, '', '%g')
            summ.addOutput('etaDiv', self.etaDiv, '', '%g')
            summ.addOutput('etaKin', self.etaKin, '', '%g')
            summ.addOutput('etaNoz', self.etaNoz, '', '%g')
        summ.addOutput('effIsp', self.effIsp, '', '%g')
        
        summ.addOutput('IspODE', self.IspODE, 'sec', '%g')
        summ.addOutput('CstarODE', self.CstarODE, 'ft/sec', '%.1f')
        summ.addOutput('Tc', self.Tc, 'degR', '%.1f')
        
        summ.addOutput('PcFace', self.PcFace, 'psia', '%g')
        summ.addOutput('Pexit', self.Pexit, 'psia', '%g')

        summ.addOutput('wdotTot', self.wdotTot, 'lbm/sec', '%g')
        summ.addOutput('wdotOx ', self.wdotOx , 'lbm/sec', '%g')
        summ.addOutput('wdotFl', self.wdotFl, 'lbm/sec', '%g')

        summ.addOutput('rhoFl', self.FlObj.rho, 'lbm/cuin', '%.4f')
        summ.addOutput('rhoOx', self.OxObj.rho, 'lbm/cuin', '%.4f')

        summ.addOutput('volDotOx ', self.volDotOx , 'cuin/sec', '%g')
        summ.addOutput('volDotFl', self.volDotFl, 'cuin/sec', '%g')
        summ.addOutput('DFlow',self.dChar,'in','%.3f')
        
        summ.addOutput('At', self.At, 'sqin', '%g')
        
        if not self.DtInp:
            summ.addOutput('Dt', self.Dt, 'in', '%.3f')
            
        summ.addOutput('Dcham', self.Dcham, 'in', '%.3f')
        summ.addOutput('Dexit', self.Dexit, 'in', '%.3f')
        summ.addOutput('Lcham', self.Lcham, 'in', '%.3f')
        summ.addOutput('xlc', self.xlc, 'in', '%.3f')
        summ.addOutput('xln', self.xln, 'in', '%.3f')

        summ.addOutput('Lnoz', self.Lnoz, 'in', '%.3f')
        summ.addOutput('Lengine', self.Lengine, 'in', '%.3f')

        summ.addOutput('rhoInj', self.rhoInj, 'lbm/cuin', '%.3f')
        summ.addOutput('rhoNozExt', self.rhoNozExt, 'lbm/cuin', '%.3f')
        
        summ.addOutput('thkNozExt', self.thkNozExt, 'in', '%.3f')

        summ.addOutput('WtNozExt', self.WtNozExt, 'lbm', '%.3f')

        summ.addOutput('...WtChannels', self.WtChannels, 'lbm', '%.3f')
        summ.addOutput('...WtCloseout', self.WtCloseout, 'lbm', '%.3f')
        summ.addOutput('...WtGasWall', self.WtGasWall, 'lbm', '%.3f')
        summ.addOutput('WtChamber', self.WtChamber, 'lbm', '%.3f')
        
        summ.addOutput('WtInj', self.WtInj, 'lbm', '%.3f')
        summ.addOutput('WtAcoustic',self.WtAcoustic, 'lbm', '%.3f')
        summ.addOutput('WtValves(2)',self.WtValves, 'lbm', '%.3f')
        summ.addOutput('WtMisc',self.WtMisc, 'lbm', '%.3f')
        if self.Number>1:
            summ.addOutput( 'wt/Engine', self.mass_lbm/self.Number, 'lbm', '%.3f' )
            summ.addOutput('F/W', self.Number * self.Fvac/self.mass_lbm, 'lbf/lbm', '%.3f')
        else:
            summ.addOutput('F/W',  self.Fvac/self.mass_lbm, 'lbf/lbm', '%.3f')

        if self.Pamb > 0.0:
            summ.addOutput('IspAmb', self.IspAmb, 'sec', '%g')
            summ.addOutput('Famb', self.Famb, 'lbf', '%g')
            summ.addOutput('nozzle condition', self.mode, '', '%s')
        
        summList.append( summ )
        
        # ======== now valves
        if self.Valves:
            summList.append( self.Valves.buildSummary() )
        
        return summList

if __name__ == "__main__":  #self test

    
    h = Engine_Regen(name="OME engine",  mass_lbm=0.0, oxName='N2O4', fuelName='MMH',
        cxw=1.25, Pc=125.0, Fvac=6000.0, eps=55.0, mr=1.65, DtInp=None,
        CR=2.5, LoverDt=4.0, LchamMin=1.5, xlnOverLcham=0.5,
        etaERE=0.97, etaNoz=0.99, matlInj="SS", cxwInj=1.0, cxwValves=4.0, isBell=1, pcentBell=80.0,
        halfAngDeg=15.0, useFastCEALookup=0, Number=1, etaKinInp=1.0,
        calcEtaNoz=1, thkNozExtMin=0.04, matlNozExt="Cb103", minBipropValveWt=0.2,
        inputIspDel=0, IspDel=300.0, valvesMassInput=None, Pamb=0.0,
        epsNozExt=6.0, SFcloseout=2.0, matlCloseout='Ni', matlGasWall="SS",
        thkMinCloseout=0.045, thkMinGasWall=0.035, aveLandWidth=0.05, aveChannelWidth=0.05,
        aveChannelHeight=0.1)

    print "Calculated =   ",h.getMassStr()
    print "w/o valves= %.3f lbm"%(h.mass_lbm - h.WtValves,)
    print
    print h.getSummary()

    print