Engine_Ablative.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
# Applied Python PRISM
# (PRISM) PaRametrIc System Model
#
# Written by Charlie Taylor <cet@appliedpython.com> 
# Oct,21 2005

from prism.MassItem import MassItem
from prism.isp.cea import CEA_Isp
from math import *
from prism.utils import Constants
from prism.Summary import Summary
from prism.props import Materials
from prism.isp import Nozzle_Eff
from prism.utils import mensuration
from prism.props import Inc_liquid
from prism.engines import ValveSolenoid
from prism.isp import separated_Cf
from prism.utils.Goal import Goal
from prism.pov import POV_Items, POV_Basics

class Engine_Ablative( MassItem ):
    
    def __init__(self, name="engine",  mass_lbm=0.0, oxName='N2O4', fuelName='MMH',
        tburn = 100.0, hasNozzleExt=1,
        cxw=1.25, Pc=150.0, Fvac=100.0, WtIgnAssy=0.0,
        epsNozExt=6.0, eps=50.0, mr=1.6, CR=2.5, LoverDt=4.0, LchamMin=1.5, xlnOverLcham=0.5,
        etaERE=0.97, etaNoz=0.99,  isBell=1, pcentBell=80.0, etaKinInp=1.0,
        halfAngDeg=15.0, useFastCEALookup=0, Number=1, 
        matlInj="SS", cxwInj=1.0, cxwMisc=1.0, cxwValves=1.0,  valveMassInp=0,
        matlStruct="Ti", calcEtaNoz=1, thkStructMin=0.02, SFstructure=2.0,
        matlNozExt="Cb103",  thkNozExtMin=0.02,
        matlAbl="SiPhen_B", SFablative=1.0,
        refCharCham=0.87, refCharThrt=1.15, refCharNoz=0.087, refCharNozEps=7.5,
        refCharPc=105.0, refCharTburn=434.0, 
        thkAblThrtMin=0.030, thkAblChamMin=0.030, thkAblNozMin=0.020,
        suppressGasWarning=0, InACan=0, Pamb=0.0 ):
        
        MassItem.__init__(self, name, type="inert")
        
        self.Number = Number # number of engines
        self.oxName = oxName
        self.fuelName = fuelName
        self.iprop = oxName + '/' + fuelName
        self.Fvac = Fvac
        self.Pc = Pc
        self.eps = eps
        
        self.WtIgnAssy = WtIgnAssy
        
        self.hasNozzleExt = hasNozzleExt
        if epsNozExt>eps:
            self.epsNozExt = eps
        else:
            self.epsNozExt = epsNozExt
        self.mr = mr
        self.CR = CR
        self.xlnOverLcham = xlnOverLcham
        self.LoverDt = LoverDt
        self.LchamMin = LchamMin
        self.cxw = cxw
        self.cxwValves = cxwValves
        self.valveMassInp = valveMassInp
        self.etaERE = etaERE
        self.etaKinInp = etaKinInp
        self.Pamb = Pamb
        
        self.isBell = isBell
        self.pcentBell = pcentBell
        self.halfAngDeg = halfAngDeg
        self.etaNoz = etaNoz
        self.calcEtaNoz = calcEtaNoz
        
        self.matlInj = matlInj
        self.thkStructMin = thkStructMin
        self.cxwInj = cxwInj
        self.rhoInj, self.syInj, self.eInj, tmingInj = Materials.getMatlProps(matlInj)
        
        self.cxwMisc = cxwMisc
        
        self.matlStruct = matlStruct
        self.rhoNoz, self.syNoz, self.eNoz, self.tmingNoz = Materials.getMatlProps(matlStruct)
        self.SFstructure = SFstructure
        
        self.matlNozExt = matlNozExt
        self.rhoNozExt, self.syNozExt, self.eNozExt, self.tmingNozExt = Materials.getMatlProps(matlNozExt)
        self.thkNozExtMin = thkNozExtMin
        
        self.tburn = tburn
        self.matlAbl = matlAbl
        self.rhoAbl, self.syAbl, self.eAbl, self.tmingAbl = Materials.getMatlProps(matlAbl)
        
        self.SFablative=SFablative
        self.refCharCham=refCharCham
        self.refCharThrt=refCharThrt
        self.refCharNoz=refCharNoz
        self.refCharPc=refCharPc
        self.refCharTburn=refCharTburn
        self.refCharNozEps=refCharNozEps
        
        self.thkAblThrtMin=thkAblThrtMin
        self.thkAblChamMin=thkAblChamMin
        self.thkAblNozMin=thkAblNozMin


        self.suppressGasWarning = suppressGasWarning
        self.InACan = InACan
        # assume storable liquids for the Ablative engine
        self.FlObj = Inc_liquid.Inc_liquid(symbol=fuelName,T=530.0,P=20.0,suppressGasWarning=self.suppressGasWarning)
        self.OxObj = Inc_liquid.Inc_liquid(symbol=oxName,T=530.0,P=20.0,suppressGasWarning=self.suppressGasWarning)
        
        if self.OxObj.Q=="GAS":
            isGas=1
        else:
            isGas=0
            
        if not self.valveMassInp:
            self.ValveOx = ValveSolenoid.ValveSolenoid( name='ox valve', Number=1, cxw=cxwValves, isGas=isGas )

        if self.FlObj.Q=="GAS" :
            isGas=1
        else:
            isGas=0
        if not self.valveMassInp:
            self.ValveFl = ValveSolenoid.ValveSolenoid( name='fuel valve', Number=1, cxw=cxwValves, isGas=isGas )

        self.ispObj = CEA_Isp.CEA_Isp( oxName=oxName, fuelName=fuelName, useFastLookup=useFastCEALookup ) # create isp calculating object
        self.reCalc()
        
    def getPOV_Item(self):
        # be sure to include pov_h, pov_w, and pov_d calcs in reCalc
        if hasattr( self, 'texture'):
            texture = self.texture
        else:
            
            if self.InACan:
                texture = POV_Basics.Texture( colorName="Brown" )
            else:
                texture = POV_Basics.Texture( colorName="Coral" )
        
        #sIn = POV_Items.TCA_Bell( xlc=self.xlc , xln=self.xln, CR=self.CR, 
        #    Rt=self.Dt/2., eps=self.eps,  pcentBell=self.pcentBell,  texture=texture)
        
        sIn = POV_Items.TCA_Bell( xlc=self.xlc , xln=self.xln, CR=self.CR, 
            Rt=self.Dt/2., eps=self.eps,  pcentBell=self.pcentBell,  texture=texture,
            isBell=self.isBell, halfAngDeg=self.halfAngDeg)


        return  sIn
        
    def getPOV_ItemOutside(self):
        # be sure to include pov_h, pov_w, and pov_d calcs in reCalc
        if hasattr( self, 'texture'):
            texture = self.texture
        else:
            
            texture = POV_Basics.Texture( colorName="Brown" )
        
        if self.InACan:
            shell = POV_Items.HollowCylinder( OD=self.RmaxInACan*2. , 
                thickness=self.thkExitInACan, height=self.xlc+self.xln+self.Lnoz, 
                texture=texture    )

            return  shell
            
        else:
            RtOut = self.Dt/2. + self.thkAblThrt + self.thkCham
            RcOut = self.Dcham/2.0 + self.thkAblCham + self.thkCham
            CRout = (RcOut/RtOut)**2
            epsOut = ((self.Dexit/2.0 + self.thkAblNoz + self.thkCham)/RtOut)**2

            pcBellOut = self.Lnoz/(sqrt(epsOut)-1.0) / (RtOut/100.0/tan(15.0*pi/180.0))

            sOut = POV_Items.TCA_Bell( xlc=self.xlc , xln=self.xln, CR=CRout, 
                Rt=RtOut, eps=epsOut,  pcentBell=pcBellOut,  texture=texture)

            return  sOut
    
    def set_Dexit(self, DexitGoal=40., epsMax=150.0):
        '''Find area ratio (eps) that gives Dexit=DexitGoal'''

        # calc divert engine area ratio
        def newDexit( e ):
            self.eps = e
            self.reCalc()
            return  self.Dexit

        G = Goal(goalVal=DexitGoal, minX=1.1, maxX=epsMax, 
            funcOfX=newDexit, tolerance=1.0E-5, maxLoops=40, failValue=epsMax)
        eps, ierror = G()
        self.eps = eps
        self.reCalc()

    
    def set_Dthrt(self, DthrtGoal=10., pcMin=50.0, pcMax=5000.0):
        '''Find area ratio (Pc) that gives Dthrt=DthrtGoal'''

        # calc divert engine area ratio
        def newDthrt( Pc ):
            self.Pc = Pc
            self.reCalc()
            return  self.Dt

        G = Goal(goalVal=DthrtGoal, minX=pcMin, maxX=pcMax, 
            funcOfX=newDthrt, tolerance=1.0E-5, maxLoops=40, failValue=pcMax)
        Pc, ierror = G()
        self.Pc = Pc
        self.reCalc()
        
        
    def reCalc(self, autoCalc=1):
        self.autoCalc = autoCalc
        # set design variables


        self.IspODE,self.CstarODE,self.Tc, self.mw, self.gam = \
            self.ispObj.get_IvacCstrTc_ThtMwGam( Pc=self.Pc, MR=self.mr, eps=self.eps)
        
        #self.IspODE,self.CstarODE,self.Tc = \
        #    self.ispObj.get_IvacCstrTc(Pc=self.Pc, MR=self.mr, eps=self.eps)
            
        self.PcOvPexit = self.ispObj.get_PcOvPe(Pc=self.Pc, MR=self.mr, eps=self.eps)
        self.Pexit = self.Pc / self.PcOvPexit
            
        if self.calcEtaNoz:
            if self.isBell:
                isConical=0
            else:
                isConical=1
            self.etaBL,self.etaDiv,self.etaKin, etaCf = \
                Nozzle_Eff.calcNozzleEfficiency(Pc=self.Pc, Fvac=self.Fvac, eps=self.eps, 
                epsAtt=self.eps, isConical=isConical, pcentBell=self.pcentBell, halfAngleDeg=self.halfAngDeg,
                iprop=self.iprop, mr=self.mr, etaKinInp=self.etaKinInp,
                adjBL=1.0, adjKin=1.0, adjDiv=1.0, isRegenCham=0, isRegenNoz=0 )
                
            self.etaNoz = etaCf
        
        self.effIsp = self.etaERE * self.etaNoz
        self.Isp = self.IspODE * self.effIsp
        self.Cstar = self.CstarODE * self.etaERE
        self.Cfvac = self.Isp * 32.174 / self.Cstar
        
        self.wdotTot = self.Fvac / self.Isp
        self.wdotOx  = self.wdotTot * self.mr / (1.0 + self.mr)
        self.wdotFl = self.wdotTot - self.wdotOx 
        
        self.volDotOx = self.wdotOx / self.OxObj.rho
        self.volDotFl = self.wdotFl / self.FlObj.rho
        
        if self.valveMassInp:
            self.WtValves = self.valveMassInp
        else:
            self.ValveOx.cuInchPerSec = self.volDotOx
            self.ValveFl.cuInchPerSec = self.volDotFl
            self.ValveOx.reCalc()
            self.ValveFl.reCalc()
            self.WtValves = self.ValveOx.mass_lbm + self.ValveFl.mass_lbm
        
        if self.FlObj.Q=="GAS" or self.OxObj.Q=="GAS":
            ftPerSec = 300.0 # through valve
        else:
            ftPerSec = 30.0 # through valve
        self.dFlowFl = sqrt( 4.0 * self.volDotFl/ pi / ftPerSec) 
        self.dFlowOx = sqrt( 4.0 * self.volDotOx / pi / ftPerSec)
        
        
        # weight of two identical valves
        #self.WtValves = 2.0 * 0.268 * (self.dFlow/1.279)**2
        #if self.WtValves < 0.2: # minimum of 45 grams per valve (90 total)
        #    self.WtValves = 0.2
        #self.WtValves *= self.cxwValves
            
        self.WtMisc = 0.319 * ((self.dFlowOx/1.279)**2 + (self.dFlowFl/1.279)**2) / 2.0  # scale miscellaneous like valve
        if self.WtMisc < 0.1:
            self.WtMisc = 0.1
            
        self.WtMisc *= self.cxwMisc
        
        self.At = self.Cstar* self.wdotTot / self.Pc / Constants.gc
        self.Dt = sqrt( self.At / pi ) * 2.0
        self.Dcham = self.Dt * sqrt( self.CR )
        self.Lcham = self.Dt * self.LoverDt
        if self.Lcham < self.LchamMin:
            self.Lcham = self.LchamMin
        self.Dexit = self.Dt * sqrt( self.eps )
        self.DnozAttach = self.Dt * sqrt( self.epsNozExt )
        
        self.xln = self.xlnOverLcham * self.Lcham
        self.xlc = self.Lcham - self.xln
        
        if self.isBell:
            self.Lnoz = (sqrt(self.eps)-1.0)*self.pcentBell*(self.Dt/2.0)/100.0/tan(15.0*pi/180.0)
            # curve fit of ratio to minimum length rao nozzle
            self.ratmlr = (self.pcentBell/100.0) * 1612.1/(self.eps + 1009.0)
            self.SAnoz = self.Dt**2/4.*(3.368*(self.eps+10.875)**1.2606 + \
                self.eps*(self.ratmlr-1.25)*10.75)
                
            self.SAatt =  self.Dt**2/4.*(1.537+1.303*(self.ratmlr-1.25))*\
                self.epsNozExt**1.705*(0.4558+1.678*exp(-.056305*self.eps))
        else:
            self.Lnoz = (sqrt(self.eps)-1.0)*(self.Dt/2.0)/tan(self.halfAngDeg*pi/180.0)
            r1 = self.Dt/2.0
            r2 = self.Dexit/2.0
            self.SAnoz = pi * sqrt((r1-r2)**2 + self.Lnoz**2) * (r1+r2)
            
            HATT = (ra-r1)/tan(self.halfAngDeg*pi/180.0)
            ra = self.DnozAttach/2.0
            self.SAatt = pi*(r1+ra)*sqrt(HATT**2+(ra-r1)**2)
        
        # if there's a nozzle extension, weigh it
        if (self.epsNozExt < self.eps) and self.hasNozzleExt:
            # there is a nozzle extension
            self.thkNozExt = self.thkNozExtMin 
            self.WtNozExt = self.rhoNozExt * self.thkNozExt * (self.SAnoz-self.SAatt)
        else:
            # no nozzle extension
            self.WtNozExt = 0.0
            self.SAatt = self.SAnoz
        
        # calculate ablative
        self.thkAblCham = self.Pc**0.4 * self.tburn**0.5 * self.refCharCham * self.SFablative\
            / (self.refCharPc**0.4 * self.refCharTburn**0.5)
           
        self.thkAblThrt = self.Pc**0.2 * self.tburn**0.77 * self.refCharThrt * self.SFablative\
            / (self.refCharPc**0.2 * self.refCharTburn**0.77)
           
        if self.hasNozzleExt:
            epsCalc = self.epsNozExt
        else:
            epsCalc = self.eps
        self.thkAblNoz = exp(-0.0247*epsCalc) * self.tburn**0.5 * self.refCharNoz * self.SFablative\
            / (exp(-0.0247*self.refCharNozEps) * self.refCharTburn**0.5)
            
        if self.thkAblThrt < self.thkAblThrtMin:
            self.thkAblThrt = self.thkAblThrtMin
        if self.thkAblCham < self.thkAblChamMin:
            self.thkAblCham = self.thkAblChamMin
        if self.thkAblNoz < self.thkAblNozMin:
            self.thkAblNoz = self.thkAblNozMin
        
        # apply the InACan design... make constant outside 
        if self.InACan:
            Rmax = max( self.Dcham/2.+self.thkAblCham, self.Dt/2.+self.thkAblThrt, self.Dexit/2.+self.thkAblNoz)
            
            self.thkAblThrt = Rmax - self.Dt/2.
            self.thkAblCham = Rmax - self.Dcham/2.
            self.thkAblNoz = Rmax - self.Dexit/2.
            
            self.RmaxInACan = Rmax
            self.thkExitInACan = Rmax - self.Dexit/2.
            
        
        self.ODcham = self.Dcham + 2.0*self.thkAblCham # correct right after structural calc
        
        # calculate chamber Ablative Volume
        VolumeChamAbl = mensuration.solidCylVol( self.ODcham, self.xlc )\
            + mensuration.solidFrustrumVol(  self.ODcham, (self.Dt+2.0*self.thkAblThrt), self.xln )\
            - mensuration.solidCylVol( self.Dcham, self.xlc )\
            - mensuration.solidFrustrumVol(  self.Dcham, self.Dt, self.xln )
        self.WtAblCham = VolumeChamAbl * self.rhoAbl
            
        # calculate Nozzle Ablative Volume
        sqrtNozExt = sqrt( epsCalc )
        aveThkNozAbl = (self.thkAblThrt + sqrtNozExt*self.thkAblNoz) / (1.0 + sqrtNozExt)
        VolumeNozAbl = aveThkNozAbl * self.SAatt
        self.WtAblNoz = VolumeNozAbl * self.rhoAbl

        # calculate structural thickness
        self.thkCham = 0.06 * (25000./self.syNoz) * (self.Pc/1000.0) * (self.ODcham/1.48) * self.SFstructure
        if self.thkCham < self.thkStructMin: 
            self.thkCham = self.thkStructMin
            
        # correct OD for structural thickness
        self.ODcham += 2.0*self.thkCham
            
        self.thkNoz = (self.thkCham*0.9 + 3.5*self.tmingNoz) * self.SFstructure / 4.5
        if self.thkNoz < self.thkStructMin: 
            self.thkNoz = self.thkStructMin
            
        self.WtNoz = self.thkNoz * self.SAatt * self.rhoNoz
        
        VolChamber = mensuration.cylVol( self.thkCham, self.Dcham, self.Lcham/2.0 ) + \
                     mensuration.coneVol( self.thkCham, self.Dcham, self.Dt, self.Lcham/2.0 )
                     
        self.WtChamber = VolChamber * self.rhoNoz # chamber is made of same matl as nozzle
        
        
        thkMultAcc = 0.05 + 0.25/self.Dcham
        VolAcustic = mensuration.cylVol( thkMultAcc*self.Dcham, self.Dcham, self.Lcham/2.0 )
        self.WtAcustic = VolAcustic * self.rhoNoz
        
        # the injector ht also gets smaller with increased Dcham
        htMultDCham = min(1.5, 1.25/self.Dcham)
        
        htInj =  self.Dcham*htMultDCham
        VolInj = mensuration.solidCylVol( self.Dcham*1.1 , htInj )
        
        if self.InACan:
            thkFlange = min( (self.ODcham - self.Dcham*1.1)/2.0,  htInj/2.0 )
            VolFlange = mensuration.cylVol( thkFlange, self.Dcham*1.1, self.thkCham*1.5 )
            self.WtCanFlange = self.rhoInj * VolFlange
        else:
            self.WtCanFlange = 0.0
        
        self.WtInj = self.rhoInj * VolInj * self.cxwInj
           
        self.Lengine = self.Lnoz + self.Lcham + self.Dcham  # use Dcham as an inj face fwd length

        
        # add up parts
        self.mass_lbm = self.WtNoz + self.WtChamber + self.WtInj + self.WtAcustic + \
            self.WtMisc + self.WtAblCham + self.WtAblNoz + self.WtNozExt + self.WtIgnAssy +\
            self.WtCanFlange
        
            
        self.mass_lbm = self.Number * ( self.mass_lbm * self.cxw   + self.WtValves )
        
        self.FtoW = self.Fvac * self.Number / self.mass_lbm

        self.PfaceOvPc =(1. + .25/self.CR**1.8)  # multiply time Pc to get PcFace
        self.PcFace = self.Pc * self.PfaceOvPc
        
        if self.Pamb > 0.0:
            CfOvCfvacAtEsep, CfOvCfvac, Cfsep, CfiVac, CfiAmbSimple, CfVac, epsSep, Psep = \
                separated_Cf.sepNozzleCf(self.gam, self.eps, self.Pc, self.Pamb)
    
            if self.Pexit > Psep:
                self.IspAmb = self.Isp - self.Cstar*self.Pamb*self.eps/self.Pc/32.174
                self.CfAmb = self.IspAmb * 32.174 / self.Cstar
            else:
                IspODEepsSep,CstarODE,Tc = \
                    self.ispObj.get_IvacCstrTc(Pc=self.Pc, MR=self.mr, eps=epsSep)
                    
                CfvacAtEsep = self.Cfvac * IspODEepsSep / self.IspODE
                
                self.CfAmb = CfvacAtEsep * CfOvCfvacAtEsep
                self.IspAmb = self.CfAmb * self.Cstar / 32.174
            
            # figure out mode of nozzle operation
            if self.Pexit > Psep:
        
                if self.Pexit > self.Pamb:
                    self.mode = 'UnderExpanded (Pe=%g)'%self.Pexit
                else:
                    self.mode = 'OverExpanded (Pe=%g)'%self.Pexit
            else:
                self.mode = 'Separated (Psep=%g, epsSep=%g)'%(Psep,epsSep)
            
            # calc ambient thrust
            self.Famb = self.wdotTot * self.IspAmb
            
        else:
            self.IspAmb = self.Isp
            self.Famb = self.Fvac

        
    def buildSummary(self):
        
        summList = []
        summ = Summary(  summName='Bipropellant Engine',
        componentName=self.name, mass_lbm=self.mass_lbm, type=self.type)
        
        summ.addAssumption( 'Propellants : ' + self.oxName + ' / ' + self.fuelName )
        summ.addAssumption( 'NASA CEA Code for ODE performance ')
        summ.addAssumption( 'Physical Weight Model ')
        summ.addAssumption( 'Injector Material is ' + self.matlInj)
        summ.addAssumption( 'Structural Material is ' + self.matlStruct)
        summ.addAssumption( 'Ablative Material is ' + self.matlAbl)
        
        if (self.epsNozExt < self.eps) and self.hasNozzleExt:
            summ.addAssumption( 'Nozzle Extension Material is ' + self.matlNozExt)
        
        if self.isBell:
            summ.addAssumption( 'Bell Nozzle with Percent Bell = %g'%self.pcentBell)
        else:
            summ.addAssumption( 'Conical Nozzle with Half Angle = %g deg'%self.halfAngDeg )
        
        if self.InACan:
            summ.addAssumption( 'Uses the Canister Design for the chamber and nozzle')
        
        if self.Number>1:
            summ.addAssumption( 'Mass is for %i engines total'%self.Number )


        #summ.addInput(self, label='generic param', value=0.0, units='', format='%g')

        summ.addInput('Fvac', self.Fvac, 'lbf', '%g')
        summ.addInput('tburn', self.tburn, 'sec', '%.1f')
        summ.addInput('Pc', self.Pc, 'psia', '%.1f')
        summ.addInput('eps', self.eps, '', '%g')
        
        if (self.epsNozExt < self.eps) and self.hasNozzleExt:
            summ.addInput('epsNozExt',self.epsNozExt,'','%g')
            
        if self.isBell:
            summ.addInput('%Bell', self.pcentBell, '%', '%.2f')
        else:
            summ.addInput('halfAngDeg', self.halfAngDeg, 'deg', '%.2f')
        summ.addInput('mr', self.mr, '', '%g')
        summ.addInput('CR', self.CR, '', '%g')
        summ.addInput('LoverDt', self.LoverDt, '', '%g')
        summ.addInput('LchamMin',self.LchamMin, 'in', '%.3f')
        summ.addInput('xlnOverLcham', self.xlnOverLcham, '', '%g')
        
        summ.addInput('thkStructMin',self.thkStructMin, 'in', '%.3f')
        
        summ.addInput('thkAblThrtMin',self.thkAblThrtMin, 'in', '%.3f')
        summ.addInput('thkAblChamMin',self.thkAblChamMin, 'in', '%.3f')
        summ.addInput('thkAblNozMin',self.thkAblNozMin, 'in', '%.3f')
        
        summ.addInput('cxwInj', self.cxwInj, '', '%g')
        summ.addInput('cxwValves', self.cxwValves, '', '%g')
        summ.addInput('cxwMisc', self.cxwMisc, '', '%g')
        summ.addInput('cxw', self.cxw, '', '%g')
        summ.addInput('etaERE', self.etaERE, '', '%g')
        if not self.calcEtaNoz:
            summ.addInput('etaNoz', self.etaNoz, '', '%g')

        if self.Pamb > 0.0:
            summ.addInput('Pamb', self.Pamb, 'psia', '%g')
        
        # outputs
        summ.addOutput('Isp', self.Isp, 'sec', '%g')
        summ.addOutput('Cstar', self.Cstar, 'ft/sec', '%.1f')
        if self.calcEtaNoz:
            summ.addOutput('etaBL', self.etaBL, '', '%g')
            summ.addOutput('etaDiv', self.etaDiv, '', '%g')
            summ.addOutput('etaKin', self.etaKin, '', '%g')
            summ.addOutput('etaNoz', self.etaNoz, '', '%g')
        summ.addOutput('effIsp', self.effIsp, '', '%g')
        
        summ.addOutput('IspODE', self.IspODE, 'sec', '%g')
        summ.addOutput('CstarODE', self.CstarODE, 'ft/sec', '%.1f')
        summ.addOutput('Tc', self.Tc, 'degR', '%.1f')
        
        summ.addOutput('PcFace', self.PcFace, 'psia', '%g')
        summ.addOutput('Pexit', self.Pexit, 'psia', '%g')
        
        summ.addOutput('wdotTot', self.wdotTot, 'lbm/sec', '%g')
        summ.addOutput('wdotOx ', self.wdotOx , 'lbm/sec', '%g')
        summ.addOutput('wdotFl', self.wdotFl, 'lbm/sec', '%g')

        summ.addOutput('rhoFl', self.FlObj.rho, 'lbm/cuin', '%.4f')
        summ.addOutput('rhoOx', self.OxObj.rho, 'lbm/cuin', '%.4f')

        summ.addOutput('volDotOx ', self.volDotOx , 'cuin/sec', '%g')
        summ.addOutput('volDotFl', self.volDotFl, 'cuin/sec', '%g')
        summ.addOutput('dFlowOx',self.dFlowOx,'in','%.3f')
        summ.addOutput('dFlowFl',self.dFlowFl,'in','%.3f')
        
        summ.addOutput('At', self.At, 'sqin', '%g')
        summ.addOutput('Dt', self.Dt, 'in', '%.3f')
        summ.addOutput('ODcham', self.ODcham, 'in', '%.3f')
        summ.addOutput('Dcham', self.Dcham, 'in', '%.3f')
        summ.addOutput('Dexit', self.Dexit, 'in', '%.3f')
        summ.addOutput('Lcham', self.Lcham, 'in', '%.3f')
        summ.addOutput('xlc', self.xlc, 'in', '%.3f')
        summ.addOutput('xln', self.xln, 'in', '%.3f')
        summ.addOutput('Lnoz', self.Lnoz, 'in', '%.3f')
        summ.addOutput('Lengine', self.Lengine, 'in', '%.3f')

        summ.addOutput('rhoInj', self.rhoInj, 'lbm/cuin', '%.3f')
        summ.addOutput('rhoNoz', self.rhoNoz, 'lbm/cuin', '%.3f')
        summ.addOutput('rhoAbl', self.rhoAbl, 'lbm/cuin', '%.3f')
        
        summ.addOutput('thkCham', self.thkCham, 'in', '%.3f')
        summ.addOutput('thkNoz', self.thkNoz, 'in', '%.3f')
        summ.addOutput('thkAblCham', self.thkAblCham, 'in', '%.3f')
        summ.addOutput('thkAblThrt', self.thkAblThrt, 'in', '%.3f')
        summ.addOutput('thkAblNoz', self.thkAblNoz, 'in', '%.3f')

        summ.addOutput('WtNozStruct', self.WtNoz, 'lbm', '%.3f')
        summ.addOutput('WtChamberStruct', self.WtChamber, 'lbm', '%.3f')
        
        summ.addOutput('WtAblCham', self.WtAblCham, 'lbm', '%.3f')
        summ.addOutput('WtAblNoz', self.WtAblNoz, 'lbm', '%.3f')
        
        summ.addOutput('WtInj', self.WtInj, 'lbm', '%.3f')
        summ.addOutput('WtAcustic',self.WtAcustic, 'lbm', '%.3f')
        summ.addOutput('WtCanFlange', self.WtCanFlange, 'lbm', '%.3f')
        
        summ.addOutput('WtValves(2)',self.WtValves, 'lbm', '%.3f')
        summ.addOutput('WtMisc',self.WtMisc, 'lbm', '%.3f')
        summ.addOutput('WtNozExt',self.WtNozExt, 'lbm', '%.3f')
        summ.addOutput('WtIgnAssy',self.WtIgnAssy,'lbm', '%.3f')
        summ.addOutput( 'wt/Engine', self.mass_lbm/self.Number, 'lbm', '%.3f' )
        
        if self.Number>1:
            summ.addOutput('F/W', self.Number * self.Fvac/self.mass_lbm, 'lbf/lbm', '%.3f')
        else:
            summ.addOutput('F/W',  self.Fvac/self.mass_lbm, 'lbf/lbm', '%.3f')
            
        if self.Pamb > 0.0:
            summ.addOutput('IspAmb', self.IspAmb, 'sec', '%g')
            summ.addOutput('Famb', self.Famb, 'lbf', '%g')
            summ.addOutput('nozzle condition', self.mode, '', '%s')
        
        
        summList.append( summ )
        
        # ======== now valves
        if not self.valveMassInp:
            summList.append( self.ValveOx.buildSummary() )
            summList.append( self.ValveFl.buildSummary() )
        
        return summList

if __name__ == "__main__":  #self test

    print "Actual Transtage engine mass =",211,"lbm"
    h = Engine_Ablative(name="Transtage Ablative Engine",  mass_lbm=0.0, oxName='N2O4', fuelName='MMH',
        tburn = 434.0, SFstructure=4.0,
        cxw=1.29, Pc=105.0, Fvac=8240.0, eps=40.0, mr=2.0, CR=2.5, LoverDt=2.5,
        etaERE=0.97,  matlInj="Al", cxwInj=1.0, isBell=1, pcentBell=67.45,
        halfAngDeg=15.0, useFastCEALookup=0, Number=1, calcEtaNoz=1)
    print h.getMassStr()
    print
    print h.getSummary()

    print "============================================================="
    print "Actual Apollo Subscale engine mass =",95,"lbm"
    h = Engine_Ablative(name="Subscale Apollo",  mass_lbm=0.0, oxName='N2O4', fuelName='MMH',
        tburn = 2000.0,epsNozExt=6.0,
        cxw=1.225, Pc=100.0, Fvac=2200.0, eps=60.0, mr=2.0, CR=2.5, LoverDt=2.5,
        etaERE=0.97,  matlInj="SS", cxwInj=1.0, isBell=1, pcentBell=67.45,
        halfAngDeg=15.0, useFastCEALookup=0, Number=1, calcEtaNoz=1,
        matlStruct="SiPhen_B",matlAbl="SiPhen_B",matlNozExt="Cb103",)
    print h.getMassStr()
    print
    print h.getSummary()


    print "============================================================="
    print "Estimated GOX/GCH4 Engine mass =",18,"lbm"
    h = Engine_Ablative(name="GOX/Ethanol RCS Engine",  mass_lbm=0.0, oxName='O2', fuelName='Ethanol',
        tburn = 200.0,epsNozExt=20.0, WtIgnAssy=13.5, valveMassInp=2.2,
        cxw=1.0, Pc=100.0, Fvac=100.0, eps=25.0, mr=1.5, CR=2.5, LoverDt=2.5,
        etaERE=0.97,  matlInj="SS", cxwInj=1.0, isBell=1, pcentBell=80.0, cxwMisc=0.25,
        halfAngDeg=15.0, useFastCEALookup=0, Number=24, calcEtaNoz=1,
        matlStruct="SiPhen_B",matlAbl="SiPhen_B",matlNozExt="Cb103",suppressGasWarning=1)
    print h.getMassStr()
    print
    print h.getSummary()

    print "============================================================="
    print "Estimated GOX/GCH4 Engine mass =",18,"lbm"
    h = Engine_Ablative(name="GOX/GCH4 RCS Engine",  mass_lbm=0.0, oxName='O2', fuelName='CH4',
        tburn = 200.0,epsNozExt=20.0, WtIgnAssy=13.5, valveMassInp=2.2, cxwMisc=0.25,
        cxw=1.0, Pc=100.0, Fvac=100.0, eps=20.0, mr=2.5, CR=2.5, LoverDt=2.5,
        etaERE=0.97,  matlInj="SS", cxwInj=1.0, isBell=1, pcentBell=80.0,
        halfAngDeg=15.0, useFastCEALookup=0, Number=1, calcEtaNoz=1,
        matlStruct="SiPhen_B",matlAbl="SiPhen_B",matlNozExt="Cb103",suppressGasWarning=1,
		Pamb=14.7)
        
    #h.set_Dthrt( DthrtGoal=1., pcMin=50.0, pcMax=5000.0)
    print h.getMassStr()
    print
    print h.getSummary()